
ABSTRACT OR SUPPORTING INFORMATION

Presentation Information:
Talk to be given at Sun NIicrosystems, Palo Alto, CA, March 26, 1999. This talk is based on a similar one

that was presented at the Workshop on Performance Evaluation with Realistic Applications, San Jose, CA,
January 25, 1999, sponsored by the qtandard Performance Evaluation Corporation (SPEC).

Title:
---- _ dMPI, HPF or OpenMP A Stu y with the NAS Benchmarkst

Authors:
H. Jin*, M. Frumkin*, M. Hribar*, A. Waheed*, and J. Yan*
NAS Division, NASA Ames Resea,-ch Center, Moffett Field, CA 94035-1000

Abstract:
'" t"Portin_ appuca.!ons to new high performance parallel and distributed platforms is a challenging task.

Writing pwallel code by hand is time consuming and costly, but this task can be simplified by high level
lan_e,iaees ami wodld even better be automated by paralleiizing tools arid compilers. The definition of HPF
(Hi)h iScrformance Fortran, based o-i data parallel model) and OpenMP (based on shared memory parallel

model} ._mndards has offered great oppo_unit?, in this respect. Both provide simple and clear interfaces to
w,l.,n_ message passin_ programs.

• Q N Tlan_.uaee like_ FO,,TRA:, and sirnpl: fy man,, tedious tasks encountered it. -:' g _ _ .
c, ',-t' _;e implemented the r,_railel versions of the NAS Benchm?.rks wi:k HPF and Onen),,lP directi,.e_.

Cornpariso:l ol their pedo:mance ,,,_th the MPI implementation and oros and cons of different approaches v. ii',
be discussed _l,.)r._: with experience of using computer-aided tools i.o he,p par:all .hz_ these benchmark?. Based
on the stud,...-(,t-'_tials of applyin-5 _o_;qe of the techniques to reali._tic aero,;pace applications ,.,,ill i-,e

preser,',c-!.

-, WorL ,a.as -;u.ppo,ted by _,ASA under cuntract number NAS2-14303 vci_k MRJ Technology Solutions.

* Er,;ployee or £Ig.J Technology So'.utions.

Note:
Only the above abstract is being submitted for Document Availability Authorization at this time. The slides

of the fuli talk will be completed amt submitted for DAA at a iater date.

NASA FORM 1676 (AUG 97) E PAGE3

MPI, HPF or OpenMP -- A Study
with the NAS Benchmarks

H. Jin, M. Frumkin, M. Hribar,

A. Waheed, and J. Yan

NAS System Division

NASA Ames Research Center

http ://science. nas. nasa. gov/Groups/Tools

/Projects/LCM/

NPB-MT_'HPF,'OMP

_A..___S

Motivation

NAS Parallel Benchmarks (NPB)

Programming Baseline for NPB (PBN)

HPF Implementation

OpenMP Implementation

Performance Comparison

Remarks

N Pfl, _ PbTfPP'_OMP

High performance computing

• evolving and expensive

• code porting costly, time-consuming

Popularity of MPI

• high performance and wide!y supported (porcabilit_

but, Lard to program, prone to error

Alternatives

• comp_iter aided tools and translators

• data parallel languages

parallelizing compilers

Goal

• examine the effectiveness of HPF and OpenMP vs. MPI

• using NPB as a test suite

3N¢ 14J NPB -M_"HPFIOMP

I _ " " "'_J : _'" "_-
{

Data partition

how data be distributed

• domain decomposition strategy

Computation distribution

• independent loops and code sections

computation masking

Data communication

• when _iata needed but not available

... downside

• no incremental approach

low-l_:el, hard to write

_B .MH/HpFtOMP

2

Data parallel language approach

parallelization based on data distribution, owner-

computes-rule

• user-added directives to distribute data and parallelize

loops

Strength

built on top of a high-level language, easy to program

portability from the HPF standard

Weakness

• questionable performance due to immaturity of

compiler technology

,- hidden performance model, hard to track

• lack of handling irregular computation

NP'B -MPUH'PF/OM P

An industry standard for SMP

• computation based on shared-memory model

• compiler-directives to parallelize loops and

independent code sections

fork-and-join model

Strength

offered incremental approach to code parallelization

• high-level constructs, easy to program

• portable for SMP, good performance

Weakness

• hidden data distribution

• not for distributed memory system

NPB-MH/I"[PWOMP

, >8 problems, 5 class (S, W, A,) sizes

derived from CFD applications

specified algorithmically, not by source code

3 pseudo-applications

• BT independent Block(Sx5)-Tridiagonal systems

• SP :ndependent Scalm-Pentadiagon-_4 systems

• LU Lower-Upper symmetric Gauss-Seidel

5 kernels

, FT

, MG

• CG

• EP

• :S

r;pectral method (FF_) to so!ve Laplr_ce equatinn
Mu!tiOrid method to solve >oisson equation

<;cr.jugate Gradient method

rmndo_-number generator Embarrassingly Parall£)

: nteger Sart

, ";7
N pit. M_r]-Ii" F Oi_Ip

Source code implen-.entation

• with MPI ccmmunication const.nacts

• coded in Fortran 77, except IS (C)

cp_imLzed gen_ically, not for specific machines

demonstrate real-world performanoe for portable user

codes

NPB 2.3-serial

,- stripped-down versions of the MPI implementations

as sta_ing points for other implementations and for

performance test of parallelizing tools/compilers

NPB .MPbHPF:OMP

What is PBN

based on N-PB2.3-serial

additional modification

• real-world user optimization of the serial codes

• memory optimization in BT and SP

• hyper-plane and pipeline algorithms in LU

• data-copy improvement in FT and IS
* more convenient timers

: Why PBN

,.prow_e the optimized version of NPB2.3-serial

make it available for public

distinguish from the official NPB

give sample HPF/OpenMP implementations

NPB-MH/HPF/OMP

Starting point

benchmarks from PBN-Serial

• BT, SP, LU, FT, CO, MG

• excluded EP (for HPF) and IS (for HPF & OpenMP)

Implementations

HPF sample implementation (PBN-H)

• done by hand

OpenMP sample implementation (PBN-O)

• created by hand with assistant of parallelizing tools

NP8-M R/HPFtOMP

Data distribution

• with ALIGN and DISTRIBUTE directives

Expressing parallelism

• Fg0 style of array expressions
• FORALL constructs

• INDEPENDENT directive for loops

• [-iPF library intrinsics

Data redistribution

* to overcome incapability of mukiprocessor pipelining
and lack of the REDISTRIBUTE directive

• needed in B'F, SP, and FT

• extra arrays used to keep the redistributed data

NPS-M R/HPFJOMP

@

.... : r _ r_-., . _:_" --; . . ++ -

_£ IDft

Parallel loops and sections
• with "! $0MP PARALLEL DO" and "' $0MP PARALLEL"

• outer-most loops for large granularity and low overhead

• no consideration of independent code sections

Variable privatization
• listlo,zalvariablesinthe "PRIVATE ()" construct

• avoid conflict of memory access and false sharing

Point-to-point synchronization

• for multiprocessor pipeline implementation in LU
with the "! $OMP FLUSH" construct

Others

data distribution based on the first-t,guch model

• no need for redistribution, thus, no extra arrays

)_ HJ NpIt +M R+HPF/OMP

6

SGI Origin2000 (distributed shared memory)

CPU: 195MHz, 32KB L1 cache, 4MB L2 cache

• compilers

• MIPSpro-f77 compiler 7.2.1

• PGI pghpf-2.4.3 compiler with MPI interface

• versions tested

• NPB-MPI, PBN-H and PBN-O

Cray T3E-1200 (distributed memory)

• PE: 300 MHz, 128MB

compilers

• Cray-fg0 compiler 3. i

• PGI pghpf-2.4.3 compiler with SHM interface

versions tested

• NPB-MPI and PBN-H

3/@9 NJ NPB-MPI/HPF_MP

• Single processor, four different platforms

• Class A/W problem size

O2K- T3E- R5K- PPro-

250MHz 300MHz 150MHz 200MHz

NP_I- M R,_PF/OM P

• On SGI Ozlgin2000, 195MH.z

• Class A problem size

,' at _ _ , Li '

--A

A, '___..._

"i

7

Number _',_ "PUs

NPB-M_,HP}" 0 _. P

• On SG[Otigin2OO0, 195MHz

• Class A problem, size

: I r

m-(_,p- ' +

f _F,-,

C_ -]- _ MG - _>

-. '.%:

"l, L

Number of CPU_

NP_ MPI/H'PF/OMP

• On Cray T3E-1200, 300MHz
* Class A problem size

10 ! " • _

e- r

O

i,i
i i

Numbcr of CPUs j

_'PB- MH/H_F/OMP

I
Over,d/, MPI inzplernentat'.'on scaling the best

,._ mulu-dLmensionai partition

good load balance

OpenMP performing quite well

• close to MPI in most cases

• even better in FT, no data transpoaition

• but, 1-D multiprocessor pipeline in LU not as good

• yet to see on larger number of processors

MPB-M R_HPFtOM?

HPF catching up, but still behind

• closer to MPI in FT and CG

• BT and SP closer to MPI on Origin2000, but deviated

quite a bit on T3E and even flat out after 32 procs

- poor perfo,wnance of MG related to the tack of handling

irregular computation kn HPF

Serial optimization

affects overall performance

optim'_zed BT as an example

/NT.?\
F-XC \ NPB M R/HPF, OMP

Echo back

MPI hard to program, OpenMP easy to write

• lack of HPF performance model still evident

• multi-level parallelism in OpenMP not quite supported

Future development

mamri ry of HPF compilers

• better tools and compilers help ease

. the writing of MPI programs
• even useful for OpemMP/HPF programs

_- on our pm-t

• tests of PBN-H/PBN-O on more platforms

• pro!yam development eTtvironment

NPB.M R/HP}:/OMP

IO

_mrzllrlLt_li_t I

III Ir ||IK_fl I (;C I"

•_PB - M PI;HPFtOM P

]!

